2020/2021 PC Lalande

MQ2-TD

Particule quantique dans un puit de potentiel

MQ2 - 01 Petites questions indépendantes

- 1) Quelle est la longueur d'onde λ_n du n-ième mode propre de vibration d'une corde de longueur L fixée à ses deux extrémités? En déduire le vecteur d'onde k_n correspondant. Les vecteurs d'onde d'une particule quantique dans un puits infini de largeur L ont une expression identique : en déduire alors les énergies possibles de la particule quantique dans le puits infini.
- 2) Résoudre l'équation de Schrödinger indépendante du temps pour le puits infini

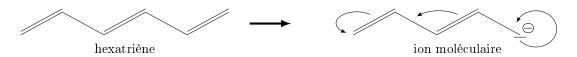
$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} + \frac{2 \, m \, E}{\hbar^2} \, \varphi = 0$$

Préciser les conditions aux limites vérifiées par $\varphi(x)$ et obtenir $\varphi_n(x)$, la partie spatiale de la fonction d'onde du n-ième état stationnaire du puits infini.

- 3) Tracer $\varphi(x)$ et $|\varphi(x)|^2$ pour les trois premiers états stationnaires.
- 4) Montrer à l'aide de l'inégalité de Heisenberg utilisée en ordre de grandeur que la particule quantique ne peut pas être au repos si elle est confinée.
- 5) Discuter les différences remarquables entre les états stationnaires du puits fini et ceux du puits infini.

MQ2 — 02 Molécule linéaire conjuguée

Certains pigments sont constitués d'ions moléculaires. On cherche ici à comprendre l'origine de leur couleur. Pour cela on considère une molécule de type $(C_nH_{n+2})^-$. Ce type d'ion est obtenu à partir de chaînes conjuguées ayant un nombre n pair d'atomes de carbone (comme l'hexatriène), auquel on a retiré un groupement $(CH)^+$ terminal, voir figure ci-dessous.



L'ion obtenu comporte alors un nombre impair n-1 d'atomes de carbone et n électrons engagés dans des liaisons π . On considère que la longueur de la chaîne est $L_n=(n-1)\,d$ avec d=1,40 Å. Les électrons π sont supposés complètement indépendants ici. Ils se déplacent librement le long de la molécule modélisée par un potentiel unidimensionnel

$$V(x) = 0$$
 si $0 \le x \le L_n$ et $V(x) = +\infty$ sinon

- 1) Quels sont les niveaux d'énergies ε_k possibles pour un électron dans cette molécule?
- 2) À cause du principe de Pauli, les électrons ne peuvent pas se ranger à plus de deux dans les niveaux ε_k . Obtenir alors l'énergie E_0 du niveau fondamental et celle E_1 du premier niveau excité pour la molécule de taille n. On rappelle que

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

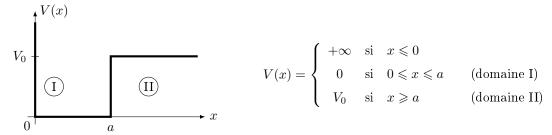
- 3) Quelle est la longueur d'onde λ_n de la lumière absorbée lors de la transition de l'état fondamental vers le premier état excité?
- 4) On observe expérimentalement que les ions $n=9,\ 11$ et 13 absorbent respectivement dans le bleu, le jaune orangé et le rouge. Le modèle établi au dessus rend-il compte de ces observations? Les ions ayant $n\geqslant 15$ ou $n\leqslant 7$ sont-ils colorés?

vraban.fr 1/2

2020/2021 PC Lalande

MQ2 - 03 Puits semi-infini

Après avoir étudié dans le cours le puits infini puis le puits fini, on considère dans cet exercice une particule quantique de masse m et d'énergie E évoluant dans le potentiel suivant, infini d'un côté, fini de l'autre.



- 1) Quelle est la condition que doit vérifier l'énergie si on veut que la particule soit dans un état lié?
- 2) On donne l'équation de Schrödinger stationnaire

$$-\frac{\hbar^2}{2\,m}\,\frac{\mathrm{d}^2\varphi(x)}{\mathrm{d}x^2} + V(x)\,\varphi(x) = E\,\varphi(x)$$

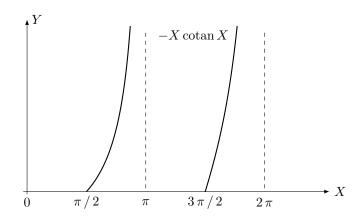
Écrire la forme de $\varphi(x)$ dans les domaines I et II en toute généralité. On introduira les vecteurs d'onde k_0 (domaine I) et k (domaine II) ainsi que quatre constantes d'intégration $A_{\rm I}$, $B_{\rm I}$, $A_{\rm II}$ et $B_{\rm II}$.

- 3) Quelles conditions aux limites sont vérifiées en x=0 et en $x\to\infty$? En déduire la valeur de deux des quatre constantes.
- 4) Quelles conditions aux limites sont vérifiées en x = a? En déduire qu'il faut

$$-X \cot X = Y$$
 avec $X = k_0 a$ et $Y = k a$

Quelle autre relation est vérifiée par X et Y?

5) On donne la représentation graphique des deux premières branches de $x \cot x$ ci dessous.



À quelle condition graphique un état lié existe-t-il? Traduire ensuite cette condition sur V_0 en fonction de a.

- 6) Dans le cas où au moins un état lié existe, tracer la forme de la partie spatiale de la fonction d'onde $\varphi(x)$ pour l'état de plus basse énergie.
- 7) Expliciter le lien entre cet exercice et les solutions impaires du puits fini.

vraban.fr 2/2