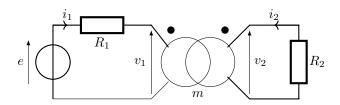

2024/2025 PSI Lalande

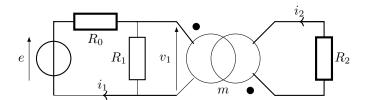
$EM \ 11/12-TD$

Milieux magnétiques et transformateurs

EM11 — 01 Couplage électromagnétique


Le circuit ci-dessous est alimenté par une tension sinusoïdale $e=E\cos(\omega\,t)$. Le coefficient d'inductance mutuelle est noté M.

- 1) Donner les équations qui régissent les intensités dans les deux circuits, en notation complexe.
- 2) On suppose que $R_0 \gg L_0 \omega$. Montrer que le second circuit peut être remplacé par une unique résistance $R_{\rm eq}$ à déterminer, qui se trouverait dans le premier.


EM11 – 02 Adaptation d'impédance

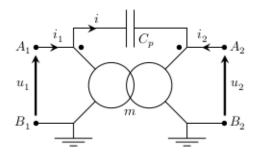
Un générateur de tension, de force électromotrice sinusoïdale $e = E \cos(\omega t)$, alimente le primaire d'un transformateur à travers une résistance R_1 .

1) À quelle condition sur le rapport de transformation m, la puissance absorbée par la résistance R_2 au secondaire est-elle maximale?

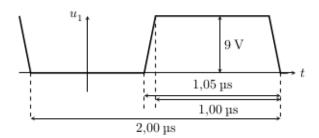
EM11 - 03 Utilisation d'un transformateur

- 1) Calculer v_1 en fonction de e, R_0 , R_1 , R_2 et m.
- 2) En déduire i_2 en fonction de e, R_0 , R_1 , R_2 et m.
- 3) Que vaut i_2 si $R_0 = R_1 = R_2 = 100 \Omega$, e = 2 V est une tension constante et m = 10?

vraban.fr 1/3


2024/2025 PSI Lalande

EM11 - 04 Étude d'un transformateur


(adapté de Centrale PSI 2023 physique 2)

Première partie. Transformateur.

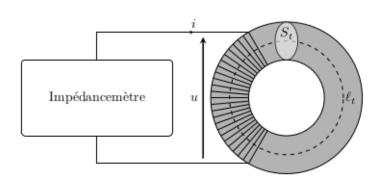
On étudie le montage à transformateur ci-dessous. Le transformateur est supposé idéal, avec un rapport de transformation m. La capacité C_p représente une capacité « parasite », rendant compte d'une influence électrostatique entre les enroulements du primaire et du secondaire.

- 1) Établir l'expression de l'intensité i en fonction de C_p , m et du_1/dt , pour une intensité de sortie nulle, $i_2 = 0$. En déduire l'expression de i_1 en fonction de C_p , m et du_1/dt . Toujours avec le modèle du transformateur idéal, quelle serait la valeur de i_1 en l'absence de la capacité parasite si $i_2 = 0$?
- 2) On alimente le circuit précédent avec une tension représentée ci-dessous :

Calculer la valeur de l'intensité maximale i_1 dans les conditions de la question précédente. Quels sont les effets de ce courant? Pourquoi ce défaut est-il particulièrement important pour les variations rapides de tension?

Deuxième partie. Milieux magnétiques.

Le transformateur contient un matériau ferromagnétique. Le rôle du matériau magnétique est de canaliser les lignes de champ magnétique. Cependant, il présente l'inconvénient d'être à l'origine de pertes énergétiques.


- 3) Dans le modèle de Bohr, un électron possède une trajectoire circulaire autour d'un noyau atomique immobile. Le moment cinétique de l'électron est $\sigma_e = ||\overrightarrow{\sigma_e}|| = \hbar$, où \hbar est la constante de Planck réduite. Établir l'expression du moment magnétique $\mu_e = ||\overrightarrow{\mu_e}||$ de cet atome, en fonction de \hbar , de la charge élémentaire e et de la masse de l'électron m_e . Effectuer l'application numérique.
- 4) Un matériau ferromagnétique de masse molaire M, de masse volumique ϱ , est formé d'atomes de moment magnétique $z \overrightarrow{\mu_e}$ où $z \in \mathbb{N}$. Quelle est l'expression de l'aimantation de saturation $M_{\rm sat}$, valeur de l'aimantation du matériau quand tous les moments magnétiques sont alignés et de même sens? Calculer la valeur $M_{\rm sat}(\text{Fe})$ pour le fer pour lequel z=4.
- 5) En reprenant la valeur précédente de $M_{\rm sat}$, quel serait le moment magnétique à saturation m_a d'un cube de fer de côté 150 μ m? Quelle serait l'intensité I parcourant une boucle circulaire de diamètre 150 μ m de moment magnétique m_a ? Commenter.

Troisième partie. Mesures des propriétés d'un milieu ferromagnétique.

Pour mesurer la perméabilité magnétique μ de ce matériau, on utilise un impédancemètre équipé d'un dispositif de caractérisation de matériaux ferromagnétiques, sous la forme d'un bobinage de N_t spires enlaçant un tore formé de ce matériau. Le tore possède une longueur moyenne ℓ_t et une section S_t .

vraban.fr 2/3

2024/2025 PSI Lalande

Le milieu ferromagnétique est étudié dans son domaine linéaire et sa perméabilité magnétique relative est notée μ_r . On suppose que les lignes de champ adoptent la symétrie de révolution du tore. L'impédancemètre génère des signaux harmoniques de pulsation $\omega = 2 \pi f_0$ avec $f_0 = 50$ Hz.

- 6) On suppose les normes des champs d'excitation magnétique \vec{H} et magnétique \vec{B} uniformes dans le tore. À quelle condition sur la géométrie du tore cette hypothèse est-elle justifiée?
- 7) En travaillant en coordonnées cylindriques, d'axe l'axe de révolution du tore, justifier que $\overrightarrow{H} = H \overrightarrow{e_{\theta}}$ et $\overrightarrow{B} = B \overrightarrow{e_{\theta}}$.
- 8) Exprimer les champs H et B en fonction de μ_0 , μ_r , N_t , l_t et i. Préciser les orientations choisies.
- 9) En déduire l'expression de l'impédance $\underline{Z} = \underline{u} / \underline{i}$. Y a-t-il dissipation d'énergie dans le matériau?

Pour décrire plus complètement les propriétés du matériau ferromagnétique, on généralise la relation $\vec{B} = \mu_0 \, \mu_r \, \vec{H}$ à une relation entre champs complexes $\vec{B} = \mu_0 \, \underline{\mu_r} \, \vec{H}$ où $\underline{\mu_r}$ est la perméabilité relative complexe et l'on pose $\underline{\mu_r} = \mu_r' - \mathrm{j} \, \mu_r''$ où μ_r' et μ_r'' sont des réèls positifs.

10) Exprimer la puissance moyenne P_c consommée dans le tore en fonction de la valeur efficace I_{eff} de l'intensité i et des caractéristiques du milieu.

vraban.fr 3/3