Révisions de Février

Vous pourrez trouver certaines corrections en ligne sur http://www.vraban.fr/TD.html.

Pour les PC et PSI

1 Mécanique des fluides

Chapitres.

- H0 Rappels de statique des fluides
- H1 Cinématique des fluides
- H2 Dynamique des fluides visqueux newtoniens en écoulement incompressible
- H3 Dynamique des fluides parfaits
- H4 Bilans macroscopiques

TD à connaître.

H0-04, H1-04, H1-05, H2-01, H2-05, H3-07, H4-02.

Démonstrations de cours à connaître.

- 1. champ de pression dans le cas d'un liquide incompressible;
- 2. champ de pression dans le cas d'un gaz parfait à température constante;
- 3. équation de conservation de la masse dans le cas général, et sa démonstration dans le cas unidimensionnel;
- 4. écoulement de Couette en coordonnées cartésiennes;
- 5. écoulement de Poiseuille en coordonnées cylindriques, calcul du débit volumique et notion de résistance hydraulique;
- 6. description d'un tube de Pitot, expression de la vitesse de l'écoulement en fonction de la différence de pression entre les deux entrées du tube;
- 7. mise en équation de la vidange de Torricelli, démonstration de l'expression de la vitesse au niveau de la fuite, temps de vidange sous l'hypothèse de quasi-stationnarité;
- 8. tube de Venturi, calcul de la différence de hauteur Δh entre l'aval et l'amont du rétrécissement du tube;
- 9. bilan de quantité de mouvement sur une canalisation coudée;
- 10. bilan de quantité de mouvement sur une fusée, obtention de l'équation du mouvement de la fusée et sa résolution.

Fiches méthode

1. Opérateurs différentiels

vraban.fr 1/7

2 Électromagnétisme

Chapitres.

EM1 - Électrostatique : Généralités EM2 - Électrostatique : Applications

EM3 - Dipôle électrostatique

EM4 - Magnétostatique : GénéralitésEM5 - Magnétostatique : Applications

EM6 - Dipôle magnétostatiqueEM7 - Équations de Maxwell

EM8 - Aspects énergétiques du champ électromagnétique

EM9 - ARQS et milieux conducteurs

(EM10 - Révision d'induction) (TD uniquement, non fait)

EM11 - Milieux ferromagnétiques (PSI seulement)

TD à connaître.

EM1-01, EM1-04, EM1-05, EM1-06, EM4-02, EM4-03, EM4-07, EM4-08, EM7-01, EM7-06, EM7-09, EM7-10.

Démonstrations de cours à connaître.

- 1. calculer le champ électrique à l'intérieur et à l'extérieur d'une boule uniformément chargée, calculer le potentiel à l'intérieur et à l'extérieur d'une boule uniformément chargée;
- 2. calculer le champ électrostatique d'un plan uniformément chargé;
- 3. obtenir la capacité d'un condensateur plan à partir du champ d'un plan uniformément chargé;
- 4. calculer le potentiel créé par un dipôle électrostatique;
- 5. définir la polarisabilité d'un atome, utiliser le modèle de Thomson pour calculer sa valeur;
- 6. calculer le champ magnétique à l'intérieur et à l'extérieur d'un cylindre (fil) parcouru par une densité de courant uniforme $\vec{j} = j \vec{e_z}$;
- 7. calculer le champ magnétique à l'intérieur d'un solénoïde infini en admettant que le champ est nul à l'extérieur du solénoïde;
- 8. définition de l'inductance propre d'un circuit filiforme et calcul de l'inductance propre d'un solénoïde;
- 9. moment magnétique orbital d'un électron dans l'atome d'hydrogène, obtention du rapport gyromagnétique de l'électron; aimantation en ordre de grandeur des milieux ferromagnétiques;
- 10. démontrer l'équation de continuité (conservation de la charge) en réalisant un bilan;
- 11. démontrer l'équation de continuité à partir des équations de Maxwell;
- 12. calculer le champ magnétique dans l'entrefer d'un circuit magnétique (PSI uniquement);
- 13. calculer l'inductance propre d'une bobine à noyau de fer (le noyau de fer est un milieu magnétique doux non saturé) (PSI uniquement).

Fiches méthode

- 1. Application du théorème de Gauss
- 2. Application du théorème d'Ampère

vraban.fr 2/7

3 Ondes

Chapitres.

- O1 Introduction à l'équation de d'Alembert
- O2 Ondes unidimensionnelles sur une corde
- O3 Ondes sonores dans les solides
- O4 Ondes sonores dans les fluides
- O5 Phénomènes de dispersion et d'absorption
- O6 Ondes électromagnétiques dans le vide

TD à connaître.

O2-04, O2-14, O4-02, O4-07, O4-08, O5-02.

TD supplémentaires.

O2-02, O2-06, O2-10.

Démonstrations de cours à connaître.

- 1. démonstration de l'équation d'onde sur une corde infiniment souple;
- 2. phénomènes d'interface : onde réfléchie et onde transmise, coefficient de réflexion et de transmission en amplitude pour une jonction entre deux cordes de masses linéïques différentes;
- 3. linéarisation de l'équation de conservation de la masse, de l'équation d'Euler et de l'équation thermodynamique;
- 4. obtention de l'équation d'onde des ondes sonores dans un fluide à 1D;
- 5. obtention de l'équation d'onde des ondes sonores dans un fluide à 3D;
- 6. réflexion et transmission sur une interface, conditions aux limites à savoir justifier, obtention des coeffcients de réflexion et de transmission en amplitude pour une OPPH de surpression;
- 7. démontrer l'équation de propagation des champs électrique et magnétique dans le vide;
- 8. savoir qu'une onde électromagnétique peut être décrite comme un faisceau de photons, obtenir le flux surfacique de photons en fonction du vecteur de Poynting;

Fiches méthode

1. Dispersion et absorption d'une onde

vraban.fr 3/7

4 Diffusion

Chapitres.

D1 - Diffusion de particules

D2 - Diffusion thermique

TD à connaître.

D1-02, D1-03, D2-02, D2-03, D2-05, D2-09.

TD supplémentaires.

Ø

Démonstrations de cours à connaître.

- 1. énoncé et démonstration de l'équation de conservation dans le cas unidimensionnel sans source;
- 2. énoncé et démonstration de l'équation de diffusion dans le cas unidimensionnel sans source;
- 3. approche microscopique du phénomène de diffusion : modèle probabiliste discret à une dimension et coefficient de diffusion en fonction de la longueur microscopique et de la vitesse microscopique;
- 4. énoncé et démonstration de l'équation de conservation de l'énergie dans le cas d'une phase incompressible indilatable pour une configuration unidimensionnelle sans perte latérale;
- 5. énoncé et démonstration de l'équation de la diffusion dans le cas d'une phase incompressible indilatable pour une configuration unidimensionnelle sans pertes latérales;
- 6. résistance thermique dans le cas d'un régime stationnaire unidimensionnel, par analogie entre la diffusion thermique et l'électrocinétique, et lois d'association.

Fiches méthode

1. Conservation du flux en géométries cartésienne, cylindrique et sphérique.

vraban.fr 4/7

Pour les PC

5 Optique

Chapitres.

OP1 - Rappels d'optique géométrique

OP2 - Modèle scalaire de la lumière

OP3 - Interférences lumineuses

OP4 - Notion de cohérence spatiale

OP5 - Notion de cohérence temporelle

 ${\bf OP6}$ - Interférences à N ondes

OP7 - Interféromètres à division d'amplitude

TD à connaître.

OP1-04, OP1-12, OP1-16, OP3-02, OP3-12, OP6-02, OP7-02.

TD supplémentaires.

Ø

Démonstrations de cours à connaître.

- 1. description de l'expérience des trous d'Young, calcul de la différence de marche et de l'éclairement à l'écran, obtention de l'interfrange;
- 2. trous d'Young dans le montage de Fraunhofer, calcul de la différence de marche et de l'éclairement, obtention de l'interfrange;
- 3. montage à trois trous d'Young, calcul de l'éclairement;
- 4. calcul de la différence de marche pour un michelson en lame d'air avec écran dans le plan focal d'une lentille :
- 5. description des interférences en coin d'air (sur les miroirs) : franges rectilignes et calcul de l'interfrange;
- 6. démonstration de la formule des réseaux (TD-cours OP6-03).

Fiches méthode

- 1. Optique ondulatoire
- 2. Interféromètre de Michelson

6 Mécanique

Chapitres.

(M1 - Rappels de mécanique)

M2 - Changements de référentiels

TD à connaître.

M2-02, M2-04, M2-10.

TD supplémentaires.

Ø.

Démonstrations de cours à connaître.

- 1. forme de la surface libre d'un fluide au repos dans un référentiel uniformément accéléré par rapport à un référentiel galiléen (camion);
- 2. forme de la surface libre d'un fluide au repos dans un référentiel en rotation uniforme autour d'un axe fixe par rapport à un référentiel galiléen.

Fiches méthode

1. Systèmes de coordonnées cartésien, cylindrique et sphérique.

vraban.fr 5/7

 ${\rm PC/PSI\ Lalande}$

7 Thermodynamique

Chapitres.

 ${\bf T3}$ - Rayonnement du corps noir

TD à connaître.

T3-08.

TD supplémentaires.

Ø.

Démonstrations de cours à connaître.

1. loi de Stefan, application à la description de l'effet de serre sur Terre.

Fiches méthode

1. Formules de thermodynamique

 ${\rm vraban.fr} \hspace{2cm} 6/7$

Pour les PSI

8 Électrocinétique

Chapitres.

E1 - Rappels d'électrocinétique (TD seulement)

E2b - Stabilité d'un système linéaire

E3 - Amplificateur linéaire intégré

E4 - Oscillateurs électroniques

TD à connaître.

E1-02, E3-01, E4-01.

Démonstrations de cours à connaître.

- 1. fonction de transfert des montages à ALI amplificateur inverseur, amplificateur non inverseur, intégrateur parfait, dérivateur parfait;
- 2. obtention du cycle d'hystérésis du montage comparateur à hystérésis (du chapitre E3);
- 3. calcul de la période du montage multivibrateur astable;

Fiches méthode

1. Électrocinétique

9 Électrotechnique

Chapitres.

ET1 - Machine synchrone

ET3 - Conversion d'énergie électrique

TD à connaître.

ET3-01.

Démonstrations de cours à connaître.

- 1. calculer la force qu'un contacteur magnétique exerce sur sa partie mobile (champ magnétique, flux, inductance, énergie magnétique \mathcal{E}_{m} puis force par $F = \partial \mathcal{E}_{\mathrm{m}} / \partial x$
- 2. à partir de la donnée du champ tournant statorique et du champ tournant rotorique dans une machine synchrone, calculer l'énergie magnétique \mathcal{E}_m dans l'entrefer et en déduire le couple par la formule fournie $\Gamma = \partial \mathcal{E}_m / \partial \alpha$.

Fiches méthode

1. Ø

vraban.fr 7/7